Low-molecular-weight fucoidan promotes therapeutic revascularization in a rat model of critical hindlimb ischemia.
نویسندگان
چکیده
The therapeutic potential of low-molecular-weight (LMW) fucoidan, a sulfated polysaccharide extracted from brown seaweed devoid of direct antithrombin effect, was investigated in vitro and in a model of critical hindlimb ischemia in rat. In vitro results showed that LMW fucoidan enhanced fibroblast growth factor (FGF)-2-induced [(3)H]thymidine incorporation in cultured rat smooth muscle cells. Intravenous injection in rats of LMW fucoidan significantly increased the stromal-derived factor (SDF)-1 level from 1.2 +/- 0.1 to 6.5 +/- 0.35 ng/ml in plasma. The therapeutic effect of LMW fucoidan (5 mg/kg/day), FGF-2 (1 micro g/kg/day), and LMW fucoidan combined with FGF-2 was assessed 14 days after induction of ischemia by 1) clinical evaluation of claudication, 2) tissue blood flow analysis, 3) histoenzymology of muscle metabolic activity, and 4) quantification of capillary density. Both LMW fucoidan and FGF-2 similarly improved residual muscle blood flow (62.5 +/- 6.5 and 64.5 +/- 4.5%, respectively) compared with the control group (42 +/- 3.5%, p < 0.0001). The combination of FGF-2 and LMW fucoidan showed further significant improvement in tissue blood flow (90.5 +/- 3%, p < 0.0001). These results were confirmed by phosphorylase activity, showing muscle regeneration in rats treated with the combination of FGF-2 and LMW fucoidan. Capillary density count increased from 9.6 +/- 0.7 capillaries/muscle section in untreated ischemic controls to 14.3 +/- 0.9 with LMW fucoidan, 14.5 +/- 0.9 with FGF-2, and 19.1 +/- 0.9 in combination (p < 0.001). Thus, LMW fucoidan potentiates FGF-2 activity, mobilizes SDF-1, and facilitates angiogenesis in a rat model. This natural compound could be of interest as an alternative for conventional treatment in critical ischemia.
منابع مشابه
Heparanase and Syndecan-4 Are Involved in Low Molecular Weight Fucoidan-Induced Angiogenesis
Induction of angiogenesis is a potential treatment for chronic ischemia. Low molecular weight fucoidan (LMWF), the sulfated polysaccharide from brown seaweeds, has been shown to promote revascularization in a rat limb ischemia, increasing angiogenesis in vivo. We investigated the potential role of two heparan sulfate (HS) metabolism enzymes, exostosin-2 (EXT2) and heparanase (HPSE), and of two ...
متن کاملFucoidan Stimulates Monocyte bMigration via ERK/p38 Signaling Pathways and MMP9 Secretion
Critical limb ischemia (CLI) induces the secretion of paracrine signals, leading to monocyte recruitment and thereby contributing to the initiation of angiogenesis and tissue healing. We have previously demonstrated that fucoidan, an antithrombotic polysaccharide, promotes the formation of new blood vessels in a mouse model of hindlimb ischemia. We examined the effect of fucoidan on the capacit...
متن کاملFucoidan Stimulates Monocyte Migration via ERK/p38 Signaling Pathways and MMP9 Secretion
Critical limb ischemia (CLI) induces the secretion of paracrine signals, leading to monocyte recruitment and thereby contributing to the initiation of angiogenesis and tissue healing. We have previously demonstrated that fucoidan, an antithrombotic polysaccharide, promotes the formation of new blood vessels in a mouse model of hindlimb ischemia. We examined the effect of fucoidan on the capacit...
متن کاملPurification of a Low Molecular Weight Fucoidan for SPECT Molecular Imaging of Myocardial Infarction
Fucoidans constitute a large family of sulfated polysaccharides with several biochemical properties. A commercial fucoidan from brown algae, containing low molecular weight polysaccharidic species constituted of l-fucose, uronic acids and sulfate groups, was simply treated here with calcium acetate solution. This treatment led to a purified fraction with a yield of 45%. The physicochemical char...
متن کاملIRES-based Vector Coexpressing FGF2 and Cyr61 Provides Synergistic and Safe Therapeutics of Lower Limb Ischemia
Due to the lack of an adequate conventional therapy against lower limb ischemia, gene transfer for therapeutic angiogenesis is seen as an attractive alternative. However, the possibility of side effects, due to the expression of large amounts of angiogenic factors, justifies the design of devices that express synergistic molecules in low controlled doses. We have developed an internal ribosome ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 305 1 شماره
صفحات -
تاریخ انتشار 2003